west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Adipose-derived stem cells" 34 results
  • RESEARCH PROGRESS OF CONSTRUCTING INJECTABLE TISSUE ENGINEERED ADIPOSE TISSUE WITH ADIPOSE-DERIVED STEM CELLS

    ObjectiveTo review the research progress of constructing injectable tissue engineered adipose tissue by adipose-derived stem cells (ADSCs). MethodsRecent literature about ADSCs composite three-dimensional scaffold to construct injectable tissue engineered adipose tissue is summarized, mainly on the characteristics of ADSCs, innovation of injectable scaffold, and methods to promote blood supply. ResultsADSCs have a sufficient amount and powerful ability such as secretion, excellent compatibility with injectable scaffold, plus with methods of promoting blood supply, which can build forms of injectable tissue engineered adipose tissue. ConclusionIn despite of many problems to be dealt with, ADSCs constructing injectable tissue engineered adipose tissue may provide a promising source for soft-tissue defect repair and plastic surgery.

    Release date:2016-08-25 10:18 Export PDF Favorites Scan
  • ADVANCEMENT OF ADIPOSE-DERIVED STEM CELLS ASSISTED AUTOLOGOUS LIPOTRANSFER IN BREAST REPAIR AND RECONSTRUCTION

    Objective To review the latest progress in the major biological properties of adipose-derived stem cells (ADSCs) and ADSCs assisted autologous lipotransfer in breast repair and reconstruction. Methods Recent literature about ADSCs assisted autologous lipotransfer in breast repair and reconstruction was reviewed. Results ADSCs have multipotential differentiation capacity, and they could promote angiogenesis and regulate immune reactions. ADSCs assisted autologous lipotransfer can obtain satisfactory effectiveness in breast repair and reconstruction with few complications, but more studies are needed to confirm the long-term safety. Conclusion ADSCs assisted autologous lipotransfer has good effectiveness in breast repaired and reconstruction. But further clinical trials are needed to confirm the long-term safety.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON ADIPOSE-DERIVED STEM CELLS TRANSFECTED BY BONE MORPHOGENETIC PROTEIN 14 CO-CULTURE WITH CHONDROCYTES

    Objective To evaluate the synergistic effect of bone morphogenetic protein 14 (BMP-14) and chondrocytes co-culture on chondrogenesis of adipose-derived stem cells (ADSCs) so as to optimize the source of seed cells for cartilage tissue engineering. Methods ADSCs and chondrocytes were isolated and cultured respectively from articular cartilage and subcutaneous fat of 2 male New Zealand white rabbits (weighing, 1.5 kg and 2.0 kg). The cells at passage 3 were harvested for experiment. ADSCs were identified by osteogenic induction (alizarin red staining), chondrogenic induction (alcian blue staining), and adipogenic induction (oil red O staining). The optimum multiplicity of infection (MOI) of transfection of adenovirus-cytomegalovirus (CMV)-BMP-14-internal ribosome entry site (IRES)-human renilla reniformis green fluorescent protein 1 (hrGFP-1) was determined and then ADSCs were transfected by the optimum MOI. The experiment was divided into 5 groups: group A, co-culture of ADSCs transfected by BMP-14 and chondrocytes (1 ∶ 1 in Transwell chambers); group B, co-culture of ADSCs and chondrocytes (1 ∶ 1 in Transwell chambers); group C, culture of ADSCs transfected by BMP-14; group D, simple chondrocytes culture; and group E, simple ADSCs culture. After 3 weeks, the glycosaminoglycan (GAG) content was detected by alcian blue staining; the expressions of collagen type II and BMP-14 protein were detected by Western blot; expression of Sox-9 gene was detected by RT-PCR. Results The cultured cells were proved to be ADSCs by identification. Inverted fluorescence microscope showed optimum transfection effect when MOI was 150. GAG content, expressions of collagen type II and BMP-14 protein, expression of Sox-9 gene were significantly higher in groups A and C than in the other 3 groups, in group A than in group C (P lt; 0.05), and groups B and D were significantly higher than group E (P lt; 0.05), but no significant difference was found between groups B and D (P gt; 0.05). Conclusion It can promote differentiation of ADSCs into chondrocytes by BMP-14 co-culture with chondrocytes, and they have a synergistic effect.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON CHONDROGENIC DIFFERENTIATION OF ADIPOSE-DERIVED STEM CELLS CO-CULTURED WITH CHONDROCYTES

    Objective To observe the chondrogenic differentiation of adipose-derived stem cells (ADSCs) by co-culturing chondrocytes and ADSCs. Methods ADSCs and chondrocytes were isolated and cultured from 8 healthy 4-month-old New Zealand rabbits (male or female, weighing 2.2-2.7 kg). ADSCs and chondrocytes at passage 2 were used. The 1 mL chondrocytes at concentration 2 × 104/mL and 1 mL ADSCs at concentration 2 × 104/mL were seeded on the upper layer and lower layer of Transwell 6-well plates separately in the experimental group, while ADSCs were cultured alone in the control group. The morphology changes of the induced ADSCs were observed by inverted phase contrast microscope. The glycosaminoglycan and collagen type II synthesized by the induced ADSCs were detected with toluidine blue staining and immunohistochemistry staining. The mRNA expressions of collagen type II, aggrecan, and SOX9 were detected with real-time fluorescent quantitative PCR. Results ADSCs in the experimental group gradually became chondrocytes-like in morphology and manifested as round; while ADSCs in the control group manifested as long spindle in morphology with whirlool growth pattern. At 14 days after co-culturing, the results of toluidine blue staining and immunohistochemistry staining were positive in the experimental group, while the results were negative in the control group. The results of real-time fluorescent quantitative PCR indicated that the expression levels of collagen type II, aggrecan, and SOX9 mRNA in the experimental group (1.43 ± 0.07, 2.13 ± 0.08, and 1.08 ± 0.08) were significantly higher than those in the control group (0.04 ± 0.03, 0.13 ± 0.04, and 0.10 ± 0.02) (P lt; 0.05). Conclusion ADSCs can differentiate into chondrocytes-like after co-culturing with chondrocytes.

    Release date:2016-08-31 04:06 Export PDF Favorites Scan
  • CONCENTRATION- OR TIME-DEPENDENT MANNER OF RECOMBINANT BONE MORPHOGENETIC PROTEIN 2 IN REGULATING EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR

    Objective To study biological rule of recombinant human bone morphogenetic protein 2 (rhBMP-2) in regulating the expression of vascular endothelial growth factor (VEGF) of adipose-derived stem cells (ADSCs) at different induced concentrations and time points at gene level and protein level. Methods ADSCs were separated from adult human adipose tissues and cultured until passage 3. After ADSCs were induced by rhBMP-2 in concentrations of 0, 50, 100, and 200 ng/ mL respectively for 24 hours, and by 100 ng/mL rhBMP-2 for 3, 6, 12, 18, 24, 36, and 48 hours (ADSCs were not induced at corresponding time point as controls) respectively, the VEGF mRNA and protein expressions were detected by RT-PCR and ELISA. Results The VEGF mRNA and protein expressions induced by rhBMP-2 were concentration-dependent; the expressions were highest in a concentration of 100 ng/mL. The VEGF mRNA expression in concentrations of 50, 100, and 200 ng/mL were significantly higher than that in a concentration of 0 ng/mL (P lt; 0.05); and the expression in concentration of 100 ng/ mL was significantly higher than that in concentrations of 50 and 200 ng/mL (P lt; 0.05). The VEGF protein expression in a concentration of 100 ng/mL was significantly higher than that in the other concentrations (P lt; 0.05). The VEGF mRNA and protein expressions induced by rhBMP-2 were time-dependent. The VEGF mRNA and protein expressions at 3 and 6 hours after induction were significantly lower than those of non-induced ADSCs (P lt; 0.05); the expressions were lower at 12 hours after induction, showing no significant difference when compared with those of non-induced ADSCs (P gt; 0.05); the expressions reached peak at 18 and 24 hours after induction, and were significantly higher than those of non-induced ADSCs (P lt; 0.05); the expressions decreased in induced and non-induced ADSCs at 36 and 48 hours, showing no significant difference between induced and non-induced ADSCs (P gt; 0.05). Conclusion rhBMP-2 adjusts VEGF expression of ADSCs in a concentration- and time-dependent manner. The optimum inductive concentration of rhBMP-2 is 100 ng/mL, induced to 18-24 hours is a key period when rhBMP-2 is used to promote tissue engineering bone vascularization.

    Release date:2016-08-31 04:08 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON TRANSFECTION OF PLEIOTROPHIN GENE INTO ADIPOSE-DERIVED STEM CELLS OF MICE

    Objective To study the transfection and expression of pleiotrophin (Ptn) gene in mice adipose-derived stem cells (ADSCs) so as to provide a new approach for the treatment of ischemic injury. Methods ADSCs from clean inbred C57BL/6W mice (weighing, 15-20 g) were isolated and cultured in vitro. The cell surface markers (CD29 and CD44) of ADSCs were identified by flow cytometry. The ADSCs were transfected with plasmid pIRES2-LEGFPN1 (containing Ptn gene coding sequence) as experimental group (group A) and with plasmid pLEGFP-N1 (containing GFP gene coding sequence) as control group (group B). After ADSCs were transfected by different plasmids respectively, the cells containing Ptn gene were selected by G418 (the best selected concentration was 200 μg/mL), and the immunophenotype of the cells was identified by flow cytometry after transfection. Meanwhile, real-time fluorescence quantitative PCR and Western blot were used to analyse the expression levels of Ptn mRNA and PTN protein in selected cells. Results The mice ADSCs were isolated and cultured successfully in vitro. The positive rates of the cell surface markers CD29 and CD44 of ADSCs were 99.5% and 95.8%, respectively; the double positive rate of CD44 and CD29 was 93.6%. The positive rates of the cell surface markers CD29 and CD44 of ADSCs were 99.1% and 95.6%, respectively after transfection of Ptn gene; the double positive rate of CD44 and CD29 was 93.4%. The expression levels of Ptn gene and PTN protein in group A were significantly higher than those in group B (P lt; 0.05). Conclusion The ADSCs can be stablely transfected by Ptn gene, the transfected ADSCs can express PTN protein highly, which is a new idea for tissue engineering of vascular reconstruction.

    Release date:2016-08-31 04:08 Export PDF Favorites Scan
  • RELATED ISSUES IN CLINICAL TRANSLATIONAL APPLICATION OF ADIPOSE-DERIVED STEM CELLS

    Objective To introduce the related issues in the clinical translational application of adipose-derived stem cells (ASCs). Methods The latest papers were extensively reviewed, concerning the issues of ASCs production, management, transportation, use, and safety during clinical application. Results ASCs, as a new member of adult stem cells family, bring to wide application prospect in the field of regenerative medicine. Over 40 clinical trials using ASCs conducted in 15 countries have been registered on the website (http://www.clinicaltrials.gov) of the National Institutes of Health (NIH), suggesting that ASCs represents a promising approach to future cell-based therapies. In the clinical translational application, the related issues included the quality control standard that management and production should follow, the prevention measures of pathogenic microorganism pollution, the requirements of enzymes and related reagent in separation process, possible effect of donor site, age, and sex in sampling, low temperature storage, product transportation, and safety. Conclusion ASCs have the advantage of clinical translational application, much attention should be paid to these issues in clinical application to accelerate the clinical translation process.

    Release date:2016-08-31 04:21 Export PDF Favorites Scan
  • IMPACT OF ADIPOSE-DERIVED STEM CELLS COMBINED WITH VASCULAR BUNDLE IMPLANTATION ONVASCULARIZED TISSUE ENGINEERING SCAFFOLDS IN VIVO

    【Abstract】 Objective To discuss the impact of adi pose-derived stem cells (ADSCs) combined with vascular bundle implantation on vascularized tissue engineering scaffolds in vivo so as to provide a theoretical basis for the repair ofavascular necrosis of the femoral head. Methods ADSCs were isolated from 4-month-old Sprague Dawley (SD) rats andcultured, then were induced to osteogenesis and identified. ADSCs at the 3rd passage were seeded on the nano-hydroxyapatide/ polyamide-66 (nHA/PA66) to prepare the composite scaffolds. The compound condition of cells and scaffold materials were observed under scanning electronic microscope (SEM). Twenty-four 4-month-old SD rats (weighing 350-400 g) were randomly divided into 3 groups (n=8). In group A and group B, the inferior epigastric artery and vein of rats were implanted into composite scaffold cultured for 10 days or simple nHA/PA66 scaffold, respectively. In group C, two composite scaffolds cultured for 10 days were embedded into quadriceps femoris muscle of both thighs, respectively. After 2 and 4 weeks of operation, angiogenesis was observed by HE staining and CD34 immunohistochemical staining. Results Cells isolated from adi pose were identified as ADSCs. SEM showed that the number of cells increased after being cultured for 10 days, cell morphology stretched fully with a shape of long spindle. HE staining and immunohistochemical staining showed that a large number of angiogenesis was observed around the implanted artery and vein in group A, which was superior to groups B and C in the number of blood vessels and the maturity of blood vessel wall. After 2 and 4 weeks of operation, the blood vessel density and blood vessel diameter were significantly higher in group A than in group B and group C, and in group B than in group C (P lt; 0.05). Conclusion Combined application of ADSCs and vascular bundle implantation can promote the degree of vascularization, which could make the scaffold vascularization rel iable.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • STUDY ON IMMUNE RESPONSE AFTER REPAIR OF NERVE DEFECT WITH ACELLULAR NERVE XENOGRAFT LADEN WITH ALLOGENIC ADIPOSE-DERIVED STEM CELLS IN RHESUS MONKEY

    Objective To observe the systemic and local immune response after repair of nerve defect with acellular nerve xenograft laden with allogenic adipose-derived stem cells (ADSCs) in rhesus monkey so as to evaluate the safety of the proposed material for nerve reconstruction. Methods Bilateral tibial nerves were taken from a healthy adult male landrace (weighing 48 kg) to prepare acellular nerve xenograft by chemical extraction. ADSCs were isolated from a healthy adult male rhesus monkey (weighing 4.5 kg), and were seeded into the acellular nerve grafts. The radial nerve defect models with 25 mm in length were established in 10 healthy adult female rhesus monkeys (weighing 3-5 kg), and they were divided into cell-laden group (n=5) and non-cell-laden group (n=5) randomly. Defect was repaired with acellular nerve xenograft laden with allogenic ADSCs in cell-laden group, with acellular nerve xenograft only in non-cell-laden group. The blood samples were taken from peripheral vein preoperatively and at 14, 60, and 90 days after operation for lymphocyte analysis; at 5 months after operation, the grafts were harvested to perform histological examination for local immune response and nerve regeneration. The nerve autograft in rhesus monkey was used as control. Results In cell-laden group and non-cell-laden group, no significant difference was found in the count of lymphocytes and T lymphocytes, the percentage of T lymphocytes, CD8+ T lymphocytes, as well as the ratio of CD4+ T lymphocytes to CD8+ T lymphocytes between pre- and post-operation (P gt; 0.05); in cell-laden group, the percentage of CD4+ T lymphocytes at 14 days was significantly lower than that at 60 and 90 days postoperatively (P lt; 0.05). The percentage of CD4+ T lymphocytes in cell-laden group was significantly lower than that in non-cell-laden group at 14 days (P lt; 0.05), but no significant difference was found in the other indexes at the other time between 2 groups (P gt; 0.05). At 5 months after operation, mild adhesion was found on the surface of nerve xenografts; the epineurium of nerve xenografts was thicker than that of nerve autografts; and neither necrosis nor fibrosis was found. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were scattered within the grafts, in which regenerative axons were revealed. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were comparable in cell-laden group, non-cell-laden group, and autograft group. Conclusion Repair of nerve defect with acellular nerve xenograft elicits neither systemic nor local immune response in rhesus monkeys. Implantation of allogenic ADSCs might result in transient depression of CD4+ T lymphocytes proliferation early after surgery, no immune response can be found.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
  • DIFFERENTIATION POTENTIAL AND APPLICATION OF STEM CELLS FROM ADIPOSE TISSUE

    Objective To introduce types and differentiation potentials of stem cells from adipose tissue, and its applications on regenerative medicine and advantages. Methods The literature of original experimental study and clinical research about bone marrow mesenchymal stem cells (BMSCs), adipose-derived stem cells (ADSCs), and dedifferentiated fat (DFAT) cells was extensively reviewed and analyzed. Results ADSCs can be isolated from stromal vascular fraction. As ADSCs have multi-lineage potentials, such as adipogenesis, osteogenesis, chondrogenesis, angiogenesis, myogenesis, and neurogenesis, they have already been successfully used in regenerative medicine areas. Dramatically, mature fat cells can be dedifferentiated and changed into fibroblast-like cells, named DFAT cells, via ceiling culture method. DFAT cells also had the same multi-lineage potentials as ADSCs, differentiating into adipocytes, osteocytes, chondrocytes, endothelial cells, muscle cells, and nerve cells. Compared with BMSCs which are commonly used as adult stem cells, ADSCs and DFAT cells have extensive sources and can be easily acquired. While compared with ADSCs, DFAT cells have good homogeneity and b proliferation capacity. Conclusion As a potential source of stem cells, adipose tissue will provide a new promising for regenerative medicine.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content